學(xué)習(xí)階段 | 學(xué)習(xí)內(nèi)容 |
人工智能之?dāng)?shù)學(xué)基礎(chǔ)(約6小時(shí)) | 1.微積分 2.線性代數(shù) 3.概率論與數(shù)理統(tǒng)計(jì) |
數(shù)據(jù)庫(kù)基礎(chǔ)——關(guān)系型數(shù)據(jù)庫(kù)(約8小時(shí)) | 1.SQL入門及安裝 2.數(shù)據(jù)表及字段操作 3.SQL查詢、鏈接 4.SQL商業(yè)應(yīng)用案例 |
數(shù)據(jù)庫(kù)基礎(chǔ)——非關(guān)系型數(shù)據(jù)庫(kù)(約5小時(shí)) | 1.MongoDB簡(jiǎn)介 2.MongoDB的常用操作 3.MongoDB的使用 4.Python操作MongoDB |
人工智能之Python基礎(chǔ)篇(約5小時(shí)) | 1.Python的安裝與環(huán)境配置 2.Python的基礎(chǔ)與規(guī)范 3.Python的基本對(duì)象類型 4.Python語(yǔ)句 |
人工智能之Python進(jìn)階篇(約5小時(shí)) | 1.函數(shù) 2.類與對(duì)象 3.庫(kù)與模塊 4.文件 5.錯(cuò)誤與異常 |
人工智能之機(jī)器學(xué)習(xí)基礎(chǔ)篇(約10小時(shí)) | 1.Python機(jī)器學(xué)習(xí)算法庫(kù)Scikit-Learn入門介紹 2.Python統(tǒng)計(jì)分析基礎(chǔ) 3.SVD分解與主成分分析 4.線性回歸算法實(shí)現(xiàn) 5.嶺回歸、Lasso和彈性網(wǎng) 6.判別分析 7.梯度下降算法原理與Scikit-Learn實(shí)現(xiàn) 8.邏輯回歸算法原理與Scikit-Learn實(shí)現(xiàn) 9.貝葉斯算法原理與Scikit-Learn實(shí)現(xiàn) 10.案例:泰坦尼克號(hào)生存預(yù)測(cè) |
人工智能之機(jī)器學(xué)習(xí)進(jìn)階篇(約20小時(shí)) | 1.KNN近鄰元素分類器 2.時(shí)間序列模型 3.EM算法 4.聚類分析 5.決策樹(shù)模型的基本原理與Scikit-Learn實(shí)現(xiàn) 6.集成算法入門 7.集成算法的Scikit-Learn實(shí)現(xiàn) 8.感知機(jī)模型基本原理 9.支持向量機(jī)基本原理與Scikit-Learn實(shí)現(xiàn) |
- 朝九晚九全程跟班
全面覆蓋同學(xué)晚自習(xí)時(shí)間
- 一對(duì)一督學(xué)
解決學(xué)員學(xué)習(xí)問(wèn)題
- 定期直播串講
攻克重難點(diǎn)知識(shí)
- 出勤率和進(jìn)度監(jiān)督
實(shí)時(shí)統(tǒng)計(jì)學(xué)員出勤情況
- 五分鐘內(nèi)有問(wèn)必答
每個(gè)班2名助教+項(xiàng)目服務(wù)團(tuán)隊(duì)
- 作業(yè)與測(cè)試
提升同學(xué)實(shí)時(shí)參與感
學(xué)員入學(xué)即簽訂具備法律效用的協(xié)議,同時(shí)與眾多企業(yè)達(dá)成人才供給合作關(guān)系,眾多實(shí)習(xí)和就業(yè)合作單位,確保每一名合格學(xué)員都有一個(gè)良好的就業(yè)機(jī)會(huì)。
專屬就業(yè)顧問(wèn),全程協(xié)助1對(duì)1模擬面試,有效提高入職率,同時(shí)注重學(xué)員職業(yè)素質(zhì)培養(yǎng),幫助學(xué)員做好職業(yè)生涯規(guī)劃與管理。