數(shù)學(xué)對(duì)很多同學(xué)來(lái)說(shuō)都是考研的難點(diǎn)。考研數(shù)學(xué)主要包含三大科目:高等數(shù)學(xué)、線性代數(shù)、概率論和數(shù)理統(tǒng)計(jì)。雖然同屬于數(shù)學(xué)這個(gè)科目,但是每一個(gè)單科都有其相適應(yīng)的復(fù)習(xí)重點(diǎn)和方式,這就需要考生在復(fù)習(xí)的過程中注意對(duì)癥下藥。文都教育今天就給大家分享一下數(shù)學(xué)三大科,分別應(yīng)該如何復(fù)習(xí)。
高等數(shù)學(xué)
高數(shù)*章不定式的極限,考生要充分掌握求不定式極限的各種方法,比如利用極限的四則運(yùn)算、兩個(gè)重要極限、洛必達(dá)法則等等,還要總結(jié)求極限過程中常用到的轉(zhuǎn)化、化簡(jiǎn)的方法。對(duì)函數(shù)的連續(xù)性的探討也是考試的重點(diǎn),這要求考生要充分理解函數(shù)連續(xù)的定義和掌握判斷連續(xù)性的方法。
對(duì)于導(dǎo)數(shù)和微分,其實(shí)重點(diǎn)不是給一個(gè)函數(shù)求導(dǎo)數(shù),而是導(dǎo)數(shù)的定義,也就是抽象函數(shù)的可導(dǎo)性,理清連續(xù)、可導(dǎo)、可微之間的關(guān)系,分清一元與多元的異同。對(duì)于積分部分,定積分、分段函數(shù)的積分、帶*值的函數(shù)的積分等各種積分的求法都是重要的題型,在求積分的過程中,一定要注意積分的對(duì)稱性,利用分段積分去掉*值把積分求出來(lái)。中值定理一般每年都要考一個(gè)題的,多看看以往考試題型,研究一下考試規(guī)律。對(duì)于微分部分,隱函數(shù)的求導(dǎo),復(fù)合函數(shù)的偏導(dǎo)數(shù)等是考試的重點(diǎn)。
二重積分的計(jì)算,當(dāng)然數(shù)學(xué)一里面還包括了三重積分,掌握積分區(qū)域具有可加性、二重積分對(duì)稱性的應(yīng)用、二重積分直角坐標(biāo)和極坐標(biāo)的變換、二重積分轉(zhuǎn)換成累次積分計(jì)算這些知識(shí)點(diǎn)。另外還有曲線和曲面積分,這是數(shù)一必考的重點(diǎn)內(nèi)容。一階微分方程,掌握幾個(gè)教材中的幾種類型的求解就可以了。還有無(wú)窮級(jí)數(shù),要掌握判別斂散性、冪級(jí)數(shù)的展開和求和常用的方法和技巧。
線性代數(shù)
線性代數(shù)考試題型不多,計(jì)算方法比較初等,但是往往計(jì)算量比較大,導(dǎo)致很多考生對(duì)線性代數(shù)感到棘手。從理論的角度出發(fā),線性代數(shù)的很多概念和性質(zhì)之間的聯(lián)系很多,特別要根據(jù)每年線性代數(shù)的兩道大題考試內(nèi)容,找出所涉及到的概念與方法之間的聯(lián)系與區(qū)別。例如向量組的秩與矩陣的秩之間的聯(lián)系,向量的線性相關(guān)性與齊次方程組是否有非零解之間的聯(lián)系,向量的線性表示與非齊次線性方程組解的討論之間的聯(lián)系,實(shí)對(duì)稱陣的對(duì)角化與實(shí)二次型化標(biāo)準(zhǔn)形之間的聯(lián)系等。掌握他們之間的聯(lián)系與區(qū)別,對(duì)做線性代數(shù)的兩個(gè)大題在解題思路和方法上會(huì)有很大的幫助。
復(fù)習(xí)過程中,綜合掌握"一條主線,兩種運(yùn)算,三個(gè)工具"。一條主線是解線性方程組,兩種運(yùn)算是求行列式、矩陣的初等行(列)變換,三個(gè)工具是行列式、矩陣、向量。其中,向量組線性相關(guān)性是難點(diǎn),要理解記憶各條定理,理清其中關(guān)系,多做題鞏固知識(shí)點(diǎn)。特征向量與二次型雖不難,但年年必考,計(jì)算能力要跟上,多做題才能提高正確率。
概率論與數(shù)理統(tǒng)計(jì)
概率論與數(shù)理統(tǒng)計(jì)課程的主要特點(diǎn)是概念和公式繁多,章節(jié)的關(guān)系松散,應(yīng)用題比較抽象,所以復(fù)習(xí)時(shí)要注重這些概念的理解。*、二章是基礎(chǔ),很少單獨(dú)命題,經(jīng)常結(jié)合后面的章節(jié)進(jìn)行考察,但這兩章要深刻理解,只有這部分內(nèi)容透徹理解后面的內(nèi)容才能容易掌握。概率部分要重點(diǎn)掌握的是二維隨機(jī)變量的概率分布、邊緣分布、條件分布、獨(dú)立性等概念,要把定義和對(duì)應(yīng)計(jì)算公式掌握的很熟練。另外,數(shù)學(xué)期望、方差、協(xié)方差、相關(guān)系數(shù)等數(shù)字特征的概念及計(jì)算公式也要重點(diǎn)復(fù)習(xí),因?yàn)檫@幾個(gè)概念是每年必考,并且主要考計(jì)算。
*后,這部分難點(diǎn)是多維隨機(jī)變量的函數(shù)的分布。這個(gè)考點(diǎn)*近幾年每年必考,并且主要以大題的形式出現(xiàn)。雖然是難點(diǎn),但是方法還是比較固定的,掌握每種題型的方法即可。大數(shù)定律和中心極限定理不是考試的重點(diǎn),考綱要求是了解,所以只要掌握定理的條件和結(jié)論。數(shù)理統(tǒng)計(jì)部分主要圍繞三大統(tǒng)計(jì)量分布,點(diǎn)估計(jì)是這部分內(nèi)容的重難點(diǎn),經(jīng)常會(huì)考解答題。統(tǒng)計(jì)量的評(píng)選標(biāo)準(zhǔn)中的無(wú)偏估計(jì)要重點(diǎn)復(fù)習(xí),有效性和相合性了解即可。區(qū)間估計(jì)和假設(shè)檢驗(yàn)這么多年考的比較少,所以也是了解一下,找?guī)讉€(gè)小題做一下就行了。